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Abstract

The single-celled protist Stentor roselii has long been observed
to exhibit complex decision-making behaviors, yet existing
machine learning and classical computational models have
struggled to replicate its actions. In this paper, we propose a
novel quantum-statistical framework to model S. roselii’s be-
havioral responses to environmental stimuli. By leveraging
quantum circuits with amplitude dampening and memory ef-
fects, we construct a quantum behavioral model that captures
the probabilistic and hierarchical nature of S. roselii’s decision-
making. Our results suggest that quantum statistical theory
provides a promising tool for representing and simulating bio-
logical decision processes.

Keywords: Decision making, Unicellular cognition, Stentor
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Introduction

Complex behavior that requires collecting information from
the environment and formulating an appropriate conditional
response has generally been thought to require specialized
cells — networks of neurons — dedicated to this task. How-
ever, recent work has shown that single neurons are capable
of surprisingly complex computations (Quian Quiroga et al.,
2023) and that even single-celled organisms have the capacity
to display conditional behaviors. These findings offer a po-
tential opening for new models for understanding low-level
biological decision-making and cognition. Here, we examine
certain aspects of the behavior of Stentor roselii, a unicellular
eukaryote.

In 1906, the biologist Herbert Spencer Jennings reported
that Stentor roselii exhibited signs of complex behavior, po-
tentially indicating a form of decision-making (Jennings,
1931). Jennings’ work seemed to indicate that the protist was
capable of choosing from a set of possible actions and that
the choice was dependent on past experiences. Long thought
to be discredited as unreplicable, a team led by Gunawar-
dena (Dexter, Prabakaran, & Gunawardena, 2019) recently
successfully replicated and expanded on Jennings’ findings,
quantifying the behavior of Stentor roselii within a dataset
that is now publicly available, and concluding that the protist
was exhibiting a form of structured decision making.

Using Jenning’s and Dexter’s findings, researchers have
sought to develop learning models capable of reproducing the
protists’ behavior. For example, in 2016 Staddon graded the
documented set of Stentor roselii’s avoidance behaviors ac-
cording to the energy required and the opportunity cost asso-
ciated with carrying out each strategy using qualitative behav-

ioral theories (Staddon, 2016). Others have applied quantita-
tive machine learning models such as decision trees, random
forests, and artificial feed-forward neural networks. How-
ever, these models fall short of fully capturing the behavior
demonstrated in Dexter’s experiments, with the best mod-
eling producing an accuracy of roughly 59% (Trinh, Way-
land, & Prabakaran, 2019). Trinh et al. conclude that Stentor
roselii’s decision-making process “cannot be fully explained
by habituation, sensitization or operant behavior” (Trinh et
al., 2019).

In order to develop an accurate and biologically plausible
model, as well as introduce a new tool to the body of literature
on this problem, we first motivate and then propose a novel
quantum statistical framework for modeling the protist’s doc-
umented avoidance behavior. Our aim is to computationally
replicate Dexter’s statistical findings while also providing a
framework capable of capturing more complex representa-
tions of the protist’s behavioral biases and cognitive schema.
To do this, we first analyze Stentor roselii’s behavior, next we
motivate the application of quantum statistical theory, before
finally proposing and testing a quantum behavioral model of
Stentor roselii.

Behavior of Stentor Roselii

Jennings reported a hierarchy of avoidance behaviors that
the protist exhibited when exposed to an irritant or toxin
(Jennings, 1931; Dexter et al., 2019). We list the behaviors in
the same sequence Jennings reported they occurred; resting
(R), bending away (B), ciliary alteration (A), contraction (C),
and detachment from the surface (D). Gunawardena’s team
concluded that there is strong statistical evidence that Sten-
tor roselii follows the ordered (R — B —A — C — D) behavioral
hierarchy. However, they note that the hierarchy was rarely
observed in full and that they instead observed many partial
instances of the hierarchy with cases of the protist skipping
steps. The one exception to the skipping phenomenon is that
detachment (D) is always the last behavior exhibited. Ac-
cording to (Staddon, 2016), (A/B) are low-energy actions,
while (C) and (D) require more energy to execute. This sug-
gests that the observed hierarchy accords with optimal forag-
ing theory, which posits that organisms evolve to minimize
energy expenditure while maximizing energy intake (Pyke,
2019). In the following section we investigate whether the
step-skipping is structured in a manner consistent with opti-
mal foraging theory.
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Figure 1: An observed sequence of behaviors (Dexter et al.,
2019)

Statistical Analysis

Dexter’s dataset is formatted as a set of sequences formed
by A,B,C,D with interspersed pluses (p) indicating instances
where the researchers manually injected a toxin into the pro-
tist’s environment. For example, a sequence may look like
”ABpACCpCCCD” or "CpCCD”. Given the structure of
the data, we define inter-sequence and intra-sequence trends.
Inter-sequence trends deal with the protist’s decision making
up until the toxin is eliminated and then reintroduced using a
pulse. Intra-sequence trends deal with how decision-making
changes across multiple interactions.

First we cover the inter-sequence trends. It is simple to
observe in Dexter’s data that (A/B) never follows (C) except
for two samples, which Dexter attributes to accidental pulses.
In other words, once a series of contractions begins, the pro-
tist will return to a resting state only after a detachment or a
behavior that successfully evades the toxin. Dexter observed
that when the protist contracts (C) there is a 50% chance the
contraction will be followed by a detachment (D), and that
the probability of remaining attached after k consecutive con-
tractions is 2—1,( This indicates that the decision to detach (D)
post contraction was tantamount to a coin flip. Through an
analysis of Dexter’s dataset, we note that the (A/B) action
had a success rate of approximately 10%, (C) was success-
ful around 50% of the time and (D) had a 100% success rate.
These results indicate that the cheaper (A/B) actions were less
effective in eliminating the toxin from the protist’s environ-
ment and that the contraction was evaluated to be successful
at the rate of a fair coin flip.

Regarding intra-sequence trends, Dexter’s experiments in-
dicated that (A) and (B) often occurred together and conse-
quently can be treated as a single action (A or/and B). Using
this notational adjustment, we note that the first action taken
by a protist with no immediate history of interacting with tox-
ins is (A/B). Additionally, Dexter notes that all 44 instances
of (D) were directly preceded by (C) and that in 30/44 in-
stances, (D) was preceded by (A or/and B). This means that
in roughly 30% of cases, the (A/B) action was skipped en-
tirely. We note that this corresponds with the 30% conditional
probability that (A/B) is reapplied, given that (A/B) failed
to remove the toxin in the protist’s most recent interaction.
This is consistent with the hypothesis that the protist learned
that the (A or/and B) response was frequently not sufficient
to eliminate the toxin and consequently opted for the more

energy-intensive option of contracting (C) immediately after
the second encounter with the toxin (Marshall, 2019).

We conclude by noting that an analysis of Dexter’s data
indicates that a single-celled organism can perform a range
of computational tasks conducive to survival, ranging from
detecting and responding to environmental stimuli to learning
statistically optimal behavior.

Motivation for a Quantum Model

Based on their statistical analyses, both Dexter and Jen-
nings conclude that Stentor roselii possesses the capacity
for hierarchical decision making. A growing body of work
acknowledges that relatively complex information process-
ing is taking place inside cells (Gershman, Balbi, Gallis-
tel, & Gunawardena, 2021; Picard & Shirihai, 2022a; Fitch,
2023). Since information processing is necessarily metabol-
ically costly (Laughlin, de Ruyter van Steveninck, & Ander-
son, 1998; Fields & Levin, 2021), intracellular information
processing creates persistent adaptive pressures to avoid heat
waste and to miniaturize — adaptive targets that may favor
quantum processes. Both experiments and simulations con-
firm that living systems have recruited quantum processes
to optimize energy capture in light harvesting (Fleming, Sc-
holes, & Cheng, 2011; B.-X. Wang et al., 2018; Uthail-
iang, Suntijitrungruang, Issarakul, Pongkitiwanichakul, &
Boonchui, 2025).

Bray proposes that intracellular information processing is
realized by biochemical pathways that act like classical logic
circuits or neural networks, conceding that the key difference
between electronic and biological circuits is that cellular cir-
cuitry is noisy and its outcomes can be difficult to predict
(Bray, 2009). Precisely these features open for the possibility
that biological systems diverge from classical logic circuits
and recruit the noisy and probabilistic characteristics of quan-
tum circuits. In the following, we explore the possibility that
the behavior of Stentor roselii is best described not by neural
networks or other deterministic and digital imitations of bio-
logical wetware, but instead through quantum circuits. While
our target is a single-celled organism, we recognize a poten-
tially fruitful overlap with the quantum statistical approach to
cognition (Pothos & Busemeyer, 2013; Z. Wang, Busemeyer,
Atmanspacher, & Pothos, 2013; Yukalov & Sornette, 2014).

Proposed Quantum Behavioral Model

In this section we describe a iterative quantum circuit that
statistically captures the Stentor roselii’s behavior. First we
introduce a 2 qubit state vector |y) where the measurement
outcome |11) is the the (A/B) action, |10) is contraction (C),
|01) is detachment (D), |00) is the resting state. We can rep-
resent |) as the tensor product of two qubit |y;) ® |y,) or as
4 x 1 vector where r,c,ab,d correspond with the square root
of the probability that the protist will choose to rest (R), con-
tract (C), deploy the (A/B) action, or detach (D) respectively.
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Secondly, we introduce a toxin qubit |p) which is |1) when
a toxin is present and |0) when there is no toxin detected.
We note that |p) is functionally a digital bit in that it will
only ever take on 0 or 1 value. We also introduce a memory
qubit |m) which allows the protist to store its previous ac-
tion. Specifically if |m) = |0) the previous action was (A/B),
if [m) = |1) the previous action was (C), if |m) = |—) then the
previous action was (D), and if there was no previous action
then |m) = |+). So the full state of the protist, which contains
the internal state qubits and environmental data qubits, can be
written as |y) ® |m) ® |p). For example, assuming the |p) is
initially set to |0) (no toxin), we can describe a protist who
has entered a toxic environment using the following circuit.

w {

jm) ——

p)

where X is the Pauli X gate, which flips the qubit its ap-
plied to and in this case “turns on” the toxin bit.(Nielsen &
Chuang, 2012). Next we describe the mechanism through
which the protist adjusts the probability of an action based on
the state of |p). In quantum circuits the process of increas-
ing or decreasing the probabilities of certain outcomes can
be replicated through amplitude dampening, a rotation based
mechanism which decreases the probability of a certain out-
come using quantum gates. We will use amplitude dampen-
ing to adjust the inter-sequence and intra-sequence statistics
of the protist. For example, given that the |y) = (0,0,0,1),
which would indicate that the protist will definitively choose
(A/B) as its next action, one could decrease the probability of
choosing (A/B) after a failed application using a Givens Ro-
tation Gp c(0). © would represent the inter-sequence learn-
ing rate, or how quickly the protist changes its preference be-
tween (A/B) and (C).

1 0 0 0
0 1 0 0

Gac(8) = 0 0 cos® sin® )
0 0 —sin® cos6

We also define a controlled G gate which outlines the var-
ious adjustments a protist can make. First, if the previous
action was an unsuccessful (A/B), then the protist decreases
the probability of choosing (A/B) again and increases the
probability of choosing (C). On the other hand, if the last
action was an unsuccessful (C), then the protist maps |y)
to |t) = % (0 1 1 0) for two reasons. First, after the

protist chooses a contraction, the probability of returning to

(A/B) before the end of the sequence drops to 0. Second, it
represents the 50/50 chance, which Dexter observed, that (C)
is reapplied or the protist detaches (D). Lastly if an action was
successful and the toxin bit |p) = |0), then the protist returns
to a resting state [y) = |00). This process can be model using

G, where Ujg) () : [W) > [9).

Gapc(0), if |m)=0) and |p) =|1)
Uy (ly)), if [m) =|1) and [p) = 1)
Ujoo) (1)), if [p) =0)

G(|m),|p)) =

3)
Using these tools we can begin to piece together a quantum
circuit that reflects the behavior of Stentor roselii. We begin
by setting the initial state of the system to |00+ 0), which rep-
resents a resting state with no toxins detected and no recorded
last action. In order to simulate the presence of a toxin we ap-
ply X ® X ® I ® X which flips the toxin bit, guarantees a first
response of (A/B), and yields the following state |11+ 1). We
set the probability of (A/B) to 1, since this is the default start-
ing action for a protist as observed in Dexter’s experimental
data. Next we measure the first two qubits of the circuit |y)
and find that the |y) has collapsed to |11) and the protist has
chosen (A/B). Based on that response, we record the last ac-
tion in |m) using the following gate:

Uy (Im)), if [y) =100)

- Upy(m)), if [y) =[11)
" Upy(lm)), if [y) = [10) 4)

Uiy(Im)), if [w) =01)

In this case the measurement outcome is |11), which cor-
responds to the (A/B) action and will trigger a bit-flip noise
operation X, applied to |p) at a probability p (Nielsen &
Chuang, 2012), where p is 0.10 as observed in Dexter’s
dataset. However in general X; can be determined by the
following function. Notice that the probability of flipping the
toxin bit to |0) is O when the protist is at rest and 1 when the
protist has detached.

Xo, if [m)=|+)
)X O Im) = |0) )
P Xy, if m)=11)

Xy, if jm)=]-)

Next we measure the toxin qubit |p) to determine whether
or not the action was successful. If the action was success-
ful and |p) = |0), we apply Gy < Ujgg)(|W)), which returns
the protist to a resting state. This process can be represented
using the following quantum circuit. It is important to note
that we assume the measurement on |y) does not de-cohere
the state. While this is simple to do within a classical simu-
lation, implementing a coherent measurement within a quan-
tum computer is more involved and is discussed in the fol-
lowing section.
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Now assume that we measure |p) = |1), then we conclude
that the previous action was unsuccessful in eliminating the
toxin. The protist measures |m) and determines that the last
action was (A/B), which prompts it to decrease the probabil-
ity of choosing (A/B) using G < Gap c(8) with some inter-
sequence learning rate 6. The state is then measured again
to determine the next action. This process continues until the
toxin is removed, which requires the measurement of |p) to
return |0), or the measurement of |y) to return |10), which
corresponds with the (C) action. Assuming we measure |y)
to be [10) (C) on the n'" iteration then X; < X 1 If the toxin

remains, we apply G, < U, (|)), which sets the probability

of choosing (C) to the statistically predicted rate of % We

repeat this process and continue to apply U (|v)), which de-
1

creases the probability of (C) to F after k failed (C) applica-
tions, until a measurement on |y) yields the detachment state
(D) |01). At this point X; < X;, which flips |p). In other
words, the toxin is eliminated and the sequence terminates.

While the sequence itself has terminated, the protist will
still use the sequence to inform future decisions. Recall the
statistical analysis which showed that in 70% of cases where
(D) was not preceded by (A or/and B) the protist had al-
ready tried and failed to apply the (A or/and B) response
to an earlier interaction with the toxin. This indicated that
upon a failed application of (A/B), the probability that the
protist chooses (A/B) as a first response in the next inter-
action with a toxin decreases to 30% while the probability
of (C) increases to 70%. Therefore, once the protist termi-
nates the sequence and begins an interaction with another
toxin, we allow the protist to access its memory and adjust
its bias towards one decision or another. In practice, this is
accomplished by applying the following function R, where
lcy=(0 0 0.7 V3)andlab)=(0 0 03 V.7)
once the sequence terminates. Notice that if there is no previ-
ous actions, the protist defaults to the AB action.

Ugly), if [m) =[1/-)
R(lm)) = € Uy W), if |m) = |0) (6)
X@X, iflm)=|+)

For example, assume that |p) is measured to be |0) on the
n'" iteration. In that case, G, < Uloo)(|w)), which sends the
protist to a resting state. Once the toxin is detected again,

which would entail manually applying an X gate to |p), the
protist adjusts its decision bias by applying R to |y) before
proceeding with the rest of the sequence. Notice that a full se-
quence, from the detection of a toxin to termination, can now
be described compactly as the following circuit where {k;}
is the set of iterations at which a sequence terminates. We
note that an application of B is a user-level decision which is
similar to Dexter’s experimental setup where the researchers
deliver toxins into an environment manually through the in-
troduction of microbeads (Dexter et al., 2019). We also note
that once the first sequence is over, we can apply B, and
{ﬂi}fikIH, and so forth.
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The Measurement Problem We note that measuring the
|w) and |p) qubits is a commonly used tool in the quantum
circuit described above. However, unlike traditional measure-
ments, which collapse the qubits to a certain state, the mea-
surement we apply is only meant to retrieve the probabilities
associated with an action or the presence of a toxin. In fact
the algorithm described above only operates as intended if the
measurement does not decohere the state, since decohering
|w) would correspond to the protist losing its internal repre-
sentation of its action biases. This feature of the algorithm
contradicts the standard Copenhagen interpretation of quan-
tum mechanics, which does not allow for measurement with-
out collapsing the quantum state (Wigner, 1963). We remain
open to the possibility that biological processes may recruit
quantum physics for information gathering without trigger-
ing decoherence, as has been claimed for the FMO complex, a
light-harvesting protein found in green sulfur bacteria, where
“reversible sampling” may play a critical role in directing ex-
citation energy from antenna complexes to reaction centers
(Fleming et al., 2011). Pilot Wave theory, an alternative inter-
pretation of quantum physics that rejects the idea of a wave-
function collapse and more generally of a ”cut” between the
quantum and classical realm, may provide a fruitful starting
point for quantum biology (De Broglie, 1927), (Bohm & Bub,
1966), (Bohm & Hiley, 2006).

A possible work-around the measurement problem can be
built using the use of “counter” qubits to count how many
times the (AB) action has been successively applied to |y).
This is done by storing ”counter” qubits |¢,) = [0 ...¢,) and
applying an increment unitary circuit containing the Toffoli,
CNOT, and X operation every time the (AB) action is chosen,
where 2" is the largest number of repetitions the counter can
store. Once any action other then (AB) is chosen we return




|&1...0,) to the ’6> through the use of state preparation gates,
indicating that the counter is restarting (Nielsen & Chuang,
2012). Applying the following circuit repeatedly will iterate
our counter from |000) — |001) — --- — |111).

1000) 001)
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We are only concerned with the (AB) action because an
action of (C) or (D) forces |y) to the specific states |¢) or
|00) respectively. In other words, only an (AB) action can
yield a non-static state. This is not surprising, considering
that when the (C) action is chosen, only (C) or (D) can be
chosen next at a probability of % In this case, once |y) is
measured and as a result collapses to one action, we apply
G(|m),|p),|0x)), which is controlled by the counter. Simply

put, if |¢,) = ‘6n> then G = G, otherwise we restore |y) to

its pre-measurement state by setting G = GLizo?'%_ Below is
the circuit for G that is used to execute this strategy. Note that
if we wish to increase the counter’s maximum we must add
“counter” qubits, however in most cases the probability that
AB is chosen more than 3 times is vanishingly small.

ly) G| |G*| |G*

ly) G
m) _
Ip)
|do) ||YZ;
|01)
|92)

Estimating the Inter-Sequence Learning Rate 0

At this point an interesting question to ask is how quickly
a protist learns that (AB) is an ineffective action strategy and
pivots to contractions (C). To answer this, we first analyze the
expected depth of each sequence given an initial state |yo).
First we let the random variable N be the number of iterations
until termination. Second we note that the length of each se-
quence depends on the evolution of the probabilities of the
(A/B) and (C) actions. So we let the state at the beginning of
the sequence be |yo) € R?, where i, , are the probabilities
of the (A/B) and (C) action respectively. We solve this prob-
lem for an arbitrary |yo) and find E[N||yo)]. We note that
this expectation can be broken up into an expectation of Nyp,
which is the number of iterations before (C) is first chosen
or an (A/B) action results in removal of the toxins, and Nc,
which is the number of iterations before (D) is first chosen or
(C) results in removal of the toxins.

E[N[|wo)] = E[Nas||wo)] + E[Nc|[wo)] @)

We observe that E[N¢| |yo)] = 2, since it is geometrically
distributed with probability 1/2, and we proceed to the calcu-
lation of E[Nag| |yo)]. For this computation, we introduce the
AB, € {0,1} random variable, where n is the number of iter-
ations that (A/B) action was consecutively selected n times
and a value of 0 represents an instance where (A/B) was not
selected. We also note the following probability measure for
(A/B), where p is the learning rate induced by G4 p(0):

P(AB,, = 1) = max(y; — pn,0), P(AB Succeeds) = .10
®)
Using these two measures, we conclude that the probability
that the number of consecutive (A/B) actions is k is P(k) =

Hf.‘:() % xmax(y; — pn,0).

. Yo )
ENasl[wo)] = Y nP(n) = Y n(yi—pn).  (9)
n=0 n=0

Take p = 0.1725 and let y; = 1. We find that the
E[Nag||Wo)] = 2.44 , which is in line with the empirically
determined expected depth of a sequence in Dexter’s dataset
(Dexter et al., 2019) !. This implies that = cos~!(1 —p) =
.59616. We conclude by reiterating that the expected depth
calculus can also serve as a powerful tool to calibrate the
inter-sequence learning rate 6.

Quantum Advantage for High Complexity Models

We note that it may seem reasonable to apply Hidden Markov
Models, Reinforcement Learning when our behavior model
is of low-complexity. However once we add more complex-
ity to the behavior model, such as p existing on a spectrum of
[0, 1] and the organism retaining a larger memory bank, then a
quantum model becomes a more natural choice that preserves
model explainability. Namely by using a quantum model we
can directly observe and quantify the degree to which current
behavior is entangled with previous actions and how previ-
ous actions are entangled with each other (Nielsen & Chuang,
2012). In other words the quantum structure can shine light
on how memory could be structured within a single celled or-
ganisms and how that memory effects current behavior. Addi-
tionally once more experimental data and corresponding en-
vironmental data becomes available we can apply work from
Busemeyer et. al to investigate systematic biases associate
with the protist’s deicion making. For example the presence
of certain environmental stimuli like acidity or food sources
may lead to quantifiable interference patterns where certain
stimuli reinforce or destroy certain behaviors (Z. Wang et al.,
2013). Finally given recent research linking quantum effect to
biological systems, a quantum model appears to be more bio-
logically plausible and offers quantum theoretical support to
future research linking biological mechanics of single celled
organisms to quantum phenomenon.

'When calculating the empirical mean we, like Dexter, excluded
as an outlier experiment 18B, in which the organism contracted 20
times after a single pulse.



Results

Now that we’ve conducted some model analysis and dis-
cussed the measurement problem, we will begin implement-
ing our quantum model and analyzing the results. To do this
end, we will perform the simulation using the model parame-
ters computed earlier through our statistical analysis of Dex-
ter’s data; {|c),|ab),|t),0}. We note that to simulate this
quantum circuit we used Google’s cirq library and opted for
the binary counter approach, as it avoids classical controls
and keeps our circuit firmly within a quantum setting (The
Cirq Developers, 2024). Using our computational model we
generated 957,489 sequences contained in 100,000 multi-
sequence patterns. We begin by comparing the inter-sequence
trends of our generated patterns with Dexter’s data. The aver-
age depth of each sequence generated has an expected depth
of 2.52 compared to Dexter’s average sequence lengths of
2.44. Additionally the probability that a protist stays attached
after k contractions is roughly % which is similar to Dexter’s
experimentally determined probability. In fact, as Dexter et.
all observed, the probability that the protist remains attached
after n contractions can be fit to an exponential random vari-
able of 0.976e~0%8%_ Note that this parametrization implies
that the probability of detachment after any number of con-
traction is 1 — e?%%% ~ 0.498.

— Normal Fit (4=2.44, 0=179)
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(a) Average depth across
957,489 generated sequences

(b) Average depth across 109
experimental sequences

Figure 2: Comparison of average sequence depth between
generated and experimental datasets
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(a) Proportion of protists at-
tached after n contractions
across 957,489 generated se-
quences

(b) Proportion of protists at-
tached after n contractions
across 109 experimental se-
quences

Figure 3: Comparison of protist attachment dynamics be-
tween generated and experimental sequences

Next we compare the intra-sequence trends of our gener-
ated patterns with Dexter’s data. As expected, we observe that
in a multi-sequence pattern, the probability that AB is chosen

first converges to 0.30 while the probability that C is chosen
first converges to 0.70. While Dexter’s dataset only has 56
multi-sequence patterns, we still observe a similar trend. In
short, our quantum model is capable of reproducing the sta-
tistical trends observed in Dexter’s data. Additionally across
the 957,489 generated sequences 87 of Dexter’s 109 experi-
mentally determined sequences were exactly reproduced.
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(b) C or AB chosen first in 56
experimental multi-sequence
patterns (Dexter et al., 2019)
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£ subsequence

(a) C or AB chosen first
in 100,000 generated multi-
sequence patterns

Figure 4: Comparison of initial action choice (C or AB) in
multi-sequence patterns between generated and experimental
data

Conclusion

In this paper, we explored the complexity of decision mak-
ing in the single-celled Stentor roselii. Through an analysis
of the data provided by Dexter, we confirmed that the pro-
tist’s behavioral responses follow statistical trends that im-
ply a form of elementary learning and context-sensitive de-
cision making. The quantum framework we introduced suc-
cessfully simulates the organism’s decision-making process
by incorporating both noise and probabilistic features ob-
served in Stentor roselii’s behavior. By utilizing quantum
statistical theory, particularly quantum circuits with ampli-
tude dampening and memory effects, our model captures the
stochastic and history-based nature of the protist’s decision-
making hierarchy. This allows for the representation of inter-
and intra-sequence learning that was absent in earlier models.
While the successful application of quantum statistical the-
ory to behavioral decision-making in a single-celled organism
does not demonstrate that the organism is in fact using quan-
tum physics in its sensing of environmental information or in
its evaluation and implementation of potential responses, the
fact that a single-celled organism can engage in a hierarchi-
cal decision process opens for the possibility that quantum-
scale physical processes are involved in information process-
ing at the cellular level. Since natural selection has had unre-
stricted access to quantum physics for billions of years, what
we need to understand and model is the kind and range of
challenges quantum processes can potentially help an organ-
ism overcome. The behavior of Stentor roeselii is consistent
with the principled prediction that quantum physics may be
enabling cellular subsystems to lower metabolic information-
processing costs by miniaturizing physical tokens, dampen-
ing noise, tracking probabilities, and minimizing heat loss.
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